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Abstract : In this paper, demonstrates self healing capability to the 
fault recovery process for each cell. It is proposed to compensate 
cells in failure by neighboring cells optimizing their coverage with 
antenna reconfiguration and power compensation resulting in filling 
the coverage gap and improving the QOS for users. The right choice 
of these reconfigured parameters is determined through a process 
involving fuzzy logic control and reinforcement learning. Results 
show an improvement in the network performance for the area under 
outage as perceived by each user in the system. The proposed method 
uses a fuzzy logic approach for clustering using the two parameters 
of energy level and centrality supported by a controller in order to 
avoid unwanted concentration of cluster heads in a particular region. 
Maximum energy is saved in the process of assigning nodes to cluster 
heads. So there is a significant increase in network life time. 
 
Keywords: Wireless sensor networks; Feed forward Neutral 
network; Signal-to-noise ratio; Fuzzy logic.  

1. INTRODUCTION 

A common sensor network is composed of a large number of 
sensor nodes which are densely deployed either inside the 
phenomenon or very close to it. The position of sensor nodes 
need1 not be engineered or predetermined. This allows 
random deployment in inaccessible terrains or disaster relief 
operations. On the other hand this also means that sensor 
network protocols and algorithms must possess self organizing 
capabilities because deploying and maintaining the nodes must 
remain inexpensive manually configuring large networks of 
small devices is impractical.  

Self Healing Dependency Constraints: 

There are often intricate coupling and complex dependency 
relationships among different parts of a system in modern 
large scale Wireless sensor Networks. Such dependencies 
incur constraints that must be under-stood and accounted for 
when composing self-healing services. Creating a 
methodology and run time framework that addresses these 
issues provides more effective self healing both in terms of 
performance and correctness. A key element of this approach 

is the dependency assessment. Basically four key types of 
dependencies which are call invocation, parameter 
consistency, control and implicit assumption dependencies. 
The invocation dependencies are often considered easy to 
identify via the explicit dependency relationships implied by 
function calls. However even these dependencies are more 
complex than implied by the top down call tree. Beyond these 
dependencies there is a collection of more complex 
dependencies that exist in many systems. These complex 
dependencies share similar traits for example they are often 
more implicit and cannot be easily traced from explicit 
function calls. 

Problem Formulation 

Routing is an important part in any wireless communication 
system. If any node failure occurs the protocol due to any sort 
of miscommunication over which the routing is getting done 
has to be updated simultaneously. There are two approaches of 
routing, static and dynamic namely. It is not necessary that the 
dynamic routing may provide the best optimal path. The 
problem of this research is to find the optimal path in case of 
any node failure with the help of the optimization algorithm 
feed forward neural network. Self healing from bugs and 
failures can be accomplished using components for detection, 
diagnosis and repair. As we know the transport layer is 
responsible for end to end error recovery and flow control. 
With an adaptive self healing mechanism the transport layer is 
more reliable in providing transparent transfer of data and 
voice traffic between two individual mobile users thus 
relieving the application software from any concern with 
providing reliable and cost effective Data transfer. 

There is a basic problem is to wait the signal from transmitter 
to send to receiver side. It occurs when any node of the 
wireless network be damaged by some sort of circumstances 
in that condition the error rate and accuracy of the system be 
varied by the time consumed in the waiting for signal. 
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This method would consists of two parameters, first is the 
training dataset and another is the target set. The target set 
identifies the routes selected. At the time of the failure the 
trained model would be called along with the features of the 
failed node to search for an alternative to it. The Feed Forward 
method would return one or more than one probable path and 
out of them the minimum energy consuming path would be 
selected as the transmission path. A smart routing protocol, 
which enables self optimization, is used and in the Mac layer, 
radio resources are managed in a self-configurable and self-
optimizing manner using learning Based strategies. Once the 
physical path is decided from the sender mobile station to a 
receiver mobile station, the self-protecting mechanism should 
protect channels from any unauthorized access and maintain 
overall stability. The methodology used in this is neural 
network designed which must be trained to optimize a TCP 
network performance measure and other wireless parameters. 
During network training, the weights and the bias are 
iteratively updated until they reach their optimal values. 

From the literature survey it recognized that the bit error rate 
and signal to noise ratio are the major parameter that reduce 
the performance of the system. For that reason, this research is 
focused on the analysis of the signals in the noise 
environment. To use MATLAB simulation processes, finally 
compare our results with other researchers results those 
obtained by using different approaches and methods.  

3. RESULT AND DISCUSSION 

A cumulative distribution functions of downlink SINR 
measurements of all characterization of the system 
performance. The main theme of these results is to reveal the 
effectiveness of using our fuzzy reinforcement learning 
algorithm, controlling the antenna down tilt and transmit 
power autonomously to guarantee minimum Quality of 
Service for all users irrespective of unexpected events. Here 
the benchmark performance is 3dB which is a set threshold for 
this study  

 
Fig. 4: Analytical result of the system for different angles of 

transmission 

The above Fig. represents the analytical result of the system 
for different angles of transmission. The cumulative 
distribution function defines the vertical side of the graph and 
signal to noise ratio define the horizontal side. 

 
Fig. 5: Communicative Distribution function against Signal to 

Noise Ratio 

The above Fig. represents communicative distribution function 
against Signal to Noise Ratio. There are basically 0 to 30 
values for signal to noise ratio and 0 to 1 for cumulative 
distribution function. Total four types of tilts of different 
colors as normal, outage and comtilt. 

 

Fig. 6: Communicative distribution function against signal to 
noise ratio for different distribution angles 

The above Fig. represents communicative distribution function 
against signal to noise ratio for different distribution angles. It 
is visible from Fig. 4, that the normal case 20th Percentile 
performance was 2.99dB. When there was an outage in the 
central site sectors 1, 2 and 3 the 20th percentile performance 
drops to 1.85dB and with compensation from neighbors using 
tilt optimization only, the system performance improves back 
to about 2.81 dB. 

In this work we set out to show that a neural network is a 
viable method of implementing a learning mechanism for data 
communication networks. We have illustrated through the use 



Routing Optimization of WSN using Feed Forward Neural Network to Reduce Energy Consumption 81 
 

 

Advanced Research in Electrical and Electronic Engineering (AREEE) 
Print ISSN: 2349-5804; Online ISSN: 2349-5812 Volume 2, Number 1 October-December (2014) 

of a network simulator that a neural network can achieve great 
accuracy in predicting one particular network problem, 
namely congestion. We realize many more problems exist that 
for which this approach is applicable, but predicting 
congestion is just the first step towards our research goals. We 
also have shown one situation in which a carefully constructed 
neural network can achieve above average results when 
structural information about the actual data network is used to 
form. 

4. CONCLUTION AND FUTURE SCOPE 
Energy consumption level is a major challenge in Wireless 
Sensor Networks. The focus of many researches has been to 
lower the energy consumption level and consequently increase 
the network life time. The proposed method uses a fuzzy logic 
approach for clustering using the two parameters of energy 
level and centrality supported by a controller in order to avoid 
unwanted concentration of cluster heads in a particular region. 
Maximum energy is saved in the process of assigning nodes to 
cluster heads. So there is a significant increase in network life 
time. 
 During routing in the wireless sensor network if any node 
failure occurs the protocol due to any sort of miss 
communication over which the routing is getting done has to 
be updated simultaneously and enhance the performance of 
routing using feed forward neural network and some other 
software tools also like neural network etc. After all we can 
protect the data accuracy using the desired protocols at the 
time of failure. To automatically manage hybrid wireless 
networks, self optimization is given special attention for 
routing protocols. Because the topology of hybrid networks 
can change dramatically with routers potentially appearing and 
disappearing from the network, congestion or link failure 
increases with the number of node. A good self-managed 
protocol for routing packets with mobility support is desirable 
which is given by feed forward neural network in this work.  
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